cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203478 a(n) = v(n+1)/v(n), where v = A203477.

Original entry on oeis.org

3, 30, 1080, 146880, 77552640, 161309491200, 1331771159347200, 43809944057885491200, 5753472333233985788313600, 3019422280481195741706977280000, 6335279362770913356551778761441280000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    [(&*[2^j + 2^n: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^(j-1); z = 13;
    v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]                       (* A203477 *)
    Table[v[n+1]/v[n], {n,z-1}]              (* A203478 *)
    Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}]  (* A164051 *)
    (* Second program *)
    Table[Product[2^j +2^n, {j,0,n-1}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
  • PARI
    a(n)=prod(i=0,n-1,2^i+2^n) \\ Charles R Greathouse IV, Feb 16 2021
    
  • SageMath
    [product(2^j + 2^n for j in range(n)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023

Formula

a(n) = A028362(n+1) * 2^(n*(n-1)/2). - Charles R Greathouse IV, Feb 16 2021
a(n) = Product_{j=0..n-1} (2^j + 2^n). - G. C. Greubel, Aug 28 2023