A203480 a(n) = v(n+1)/v(n), where v = A203479.
4, 80, 6336, 1901824, 2167925760, 9505110118400, 162323441859870720, 10902076148767162433536, 2898720791385603198124032000, 3064112360434477703904869089280000, 12909951234577776926559241120412860416000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..55
Programs
-
Magma
[(&*[2^j +2^(n+1) -2: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
Mathematica
(* First program *) f[j_]:= 2^j - 1; z = 15; v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] Table[v[n], {n,z}] (* A203479 *) Table[v[n+1]/v[n], {n,z-1}] (* A203480 *) Table[v[n+1]/(4*v[n]), {n,z-1}] (* A203481 *) (* Second program *) Table[Product[2^(n+1) +2^k -2, {k,n}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
SageMath
[product(2^j+2^(n+1)-2 for j in range(1,n+1)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023
Formula
a(n) = Product_{k=1..n} (2^k + 2^(n+1) - 2). - G. C. Greubel, Aug 28 2023
a(n) ~ c * 2^(n*(n+1)), where c = 1/QPochhammer(1/2, 1/4) = A079555 = 2.3842310290313717... - Vaclav Kotesovec, Aug 09 2025