A203483 a(n) = v(n+1)/v(n), where v = A203482.
3, 56, 19500, 267841728, 236189890379520, 19303349192505048268800, 199126474924007956512865886208000, 339543987407937097660189431863908761600000000, 121553118121801544803671246298148699436481551316864204800000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..29
Programs
-
Magma
[(&*[Factorial(k) + Factorial(n+1): k in [1..n]]): n in [1..16]]; // G. C. Greubel, Aug 29 2023
-
Mathematica
(* First program *) f[j_]:= j!; z = 10; v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *) Table[v[n], {n,z}] (* A203482 *) Table[v[n+1]/v[n], {n,z-1}] (* this sequence *) Table[v[n]/d[n], {n,10}] (* A203510 *) (* Second program *) Table[Product[k!+(n+1)!, {k,n}], {n,15}] (* G. C. Greubel, Aug 29 2023 *)
-
SageMath
[product(factorial(k) + factorial(n+1) for k in range(1,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 29 2023
Formula
a(n) = Product_{k=1..n} (k! + (n+1)!). - G. C. Greubel, Aug 29 2023
From Vaclav Kotesovec, Nov 20 2023: (Start)
a(n) ~ (n+1)!^n.
a(n) ~ (2*Pi)^(n/2) * n^(n^2 + 3*n/2) / exp(n^2 - 13/12). (End)