cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203498 Row sums of triangle A203484.

Original entry on oeis.org

1, 2, 44, 12, 2316, 56, 86756, 7548, 2745504, 14216, 8303228, 27440, 26755926552, 17777912, 337554780656, 166149231952, 41032825702988, 10165065032, 19445273523788, 559223251080, 52853093762480872, 2217608618621076, 3130076262074284420, 9840817961344
Offset: 0

Views

Author

Keywords

Comments

Conjecture. If prime p==1 (mod 3), then a((p-1)/3)==2 (mod p); if prime p==2 mod 3, then a((2*p-1)/3)==2 (mod p).

Crossrefs

A178473 For n>=0, let n!^(4) = A202369(n+1) and, for 0<=m<=n, C^(4)(n,m) = n!^(4)/(m!^(4)*(n-m)!^(4)). The sequence gives triangle of numbers C^(4)(n,m) with rows of length n+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 273, 273, 1, 1, 68, 9282, 68, 1, 1, 55, 1870, 1870, 55, 1, 1, 546, 15015, 3740, 15015, 546, 1, 1, 29, 7917, 1595, 1595, 7917, 29, 1
Offset: 0

Views

Author

Keywords

Comments

Conjecture. If p is prime of the form 4*k+1, then the k-th row contains two 1's and k-1 numbers multiple of p; if p is prime of the form 4*k+3, then the (2*k+1)-th row contains two 1's and 2*k numbers multiple of p.

Examples

			Triangle begins
n/m.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1......1
.2..|..1......2......1
.3..|..1....273 ...273......1
.4..|..1.....68...9282.....68......1
.5..|..1.....55...1870...1870.....55......1
.6..|..1....546..15015...3740..15015....546....1
.7..|..1.....29...7917...1595...1595...7917...29.....1
.8..|
		

Crossrefs

Formula

Conjecture. A007814(C^(4)(n,m)) = A007814(C(n,m)).

A203509 Row sums of triangle A178473.

Original entry on oeis.org

1, 2, 4, 548, 9420, 3852, 34864, 19084, 15296, 154560176, 7180221844, 887102780, 211332046788, 71893259484, 20454788424, 5986072942766808, 5988933869570752, 22285488224, 2756032824242080, 17677170921656, 679436626785756, 20936052371230100988
Offset: 0

Views

Author

Keywords

Comments

Conjecture. If prime p==1 (mod 4), then a((p-1)/4)==2 (mod p); if prime p==3 (mod 4), then a((p-1)/2)==2 (mod p).

Crossrefs

Showing 1-3 of 3 results.