cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203515 a(n) = A203514(n+1)/A203514(n).

Original entry on oeis.org

13, 1519, 490827, 310285521, 323965491213, 505036803636351, 1099306007175141675, 3185114376029382371169, 11851908573273735083748813, 55083172732097477388836049999, 312715835695576039538837531922507
Offset: 1

Views

Author

Clark Kimberling, Jan 04 2012

Keywords

Comments

See A093883 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Magma
    [(&*[(2*n+1)^3 -(2*j-1)^3: j in [1..n]])/(2^n*Factorial(n)): n in [1..30]]; // G. C. Greubel, Feb 23 2024
    
  • Mathematica
    (* First program *)
    f[j_]:= 2 j - 1; z = 12;
    v[n_]:= Product[f[j]^2 + f[j]*f[k] + f[k]^2, {k,2,n}, {j,k-1}]
    Table[v[n], {n, z}]           (* A203514 *)
    Table[v[n + 1]/v[n], {n, z}]  (* A203515 *)
    (* Second program *)
    A203515[n_]:= Product[(2*n+1)^3 - (2*j-1)^3, {j,n}]/(2^n*n!);
    Table[A203515[n], {n,30}] (* G. C. Greubel, Feb 23 2024 *)
  • SageMath
    def A203515(n): return product((2*n+1)^3 -(2*j-1)^3 for j in range(1, n+1))/(2^n*factorial(n))
    [A203515(n) for n in range(1,31)] # G. C. Greubel, Feb 23 2024

Formula

a(n) = (1/(2^n * n!))*Product_{j=1..n} ((2*n+1)^3 - (2*j-1)^3). - G. C. Greubel, Feb 23 2024