A203531 Run lengths in Golay-Rudin-Shapiro sequence A020985.
3, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, 4, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 1, 4, 1, 2, 1, 4, 3
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence
Crossrefs
Cf. A020985.
Programs
-
Haskell
import Data.List (group) a203531 n = a203531_list !! n a203531_list = map length $ group a020985_list
-
Mathematica
Map[Length, Most[Split[RudinShapiro[Range[0, 200]]]]] (* Paolo Xausa, Jan 29 2025 *)
-
Python
from itertools import count, islice def A203531_gen(): # generator of terms c, a = 0, 1 for n in count(0): if (n&(n>>1)).bit_count()&1^a: c += 1 else: yield c c = 1 a ^= 1 A293531_list = list(islice(A203531_gen(),30)) # Chai Wah Wu, Feb 11 2023
Comments