cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203534 G.f.: exp( Sum_{n>=1} sigma(n)*A002203(n)*x^n/n ) where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 2, 11, 38, 156, 516, 1991, 6434, 23065, 75132, 255335, 816480, 2724245, 8570794, 27763807, 87057596, 276339126, 855374534, 2681503010, 8218321006, 25421912010, 77383062314, 236519199902, 714226056554, 2165295121179, 6490447624984, 19503550719297, 58127246438024
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2012

Keywords

Comments

Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), and to the g.f. of Pell numbers: exp( Sum_{n>=1} A002203(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 38*x^3 + 156*x^4 + 516*x^5 + 1991*x^6 +...
where
A(x) = 1/((1-2*x-x^2) * (1-6*x^2+x^4) * (1-14*x^3-x^6) * (1-34*x^4+x^8) * (1-82*x^5-x^10) * (1-198*x^6+x^12) *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) *...).
The companion Pell numbers (starting at offset 1) begin:
A002203 = [2,6,14,34,82,198,478,1154,2786,6726,16238,...].
		

Crossrefs

Cf. A156234, A000129 (Pell), A002203 (companion Pell), A000203 (sigma).

Programs

  • PARI
    /* Subroutine used in PARI programs below: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1, n, 1/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
    
  • PARI
    {a(n)=if(n<0,0,if(n==0,1,(1/n)*sum(k=1,n,sigma(k)*A002203(k)*a(n-k))))}

Formula

G.f.: Product_{n>=1} 1/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)).
a(n) = (1/n)*Sum_{k=1..n} sigma(k)*A002203(k)*a(n-k) for n>0, with a(0) = 1.