cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203573 Bisection of A099924 (convolution of Lucas numbers); even arguments.

Original entry on oeis.org

4, 13, 45, 152, 491, 1531, 4652, 13865, 40713, 118144, 339559, 968183, 2742100, 7721797, 21637221, 60367976, 167787107, 464776435, 1283571068, 3535240289, 9713031489, 26627195728, 72847698655, 198929987567, 542305383076, 1476061431421
Offset: 0

Views

Author

Wolfdieter Lang, Jan 03 2012

Keywords

Comments

One half of the odd part of the bisection of A099924 is found in A203574.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4-11x+11x^2+x^3)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{4,13,45,152},30] (* Harvey P. Dale, Jan 11 2014 *)

Formula

a(n) = A099924(2*n), n>=0.
O.g.f.: (4-11*x+11*x^2+x^3)/(1-3*x+x^2)^2.
a(n) = 4*(n+1)*F(2*n+1)-(2*n+1)*F(2*n), n>=0, with the Fibonacci numbers F(n)=A000045(n). From the partial fraction decomposition of the o.g.f. and the Fibonacci recurrence.
a(0)=4, a(1)=13, a(2)=45, a(3)=152, a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4). - Harvey P. Dale, Jan 11 2014