A203578 Exponential (or binomial) half-convolution of A000045 (Fibonacci) with itself.
0, 0, 2, 3, 14, 35, 155, 371, 1518, 3891, 15745, 40755, 161459, 426803, 1671175, 4469555, 17301630, 46805811, 179569163, 490156851, 1865624365, 5132989235, 19404565567, 53753361203, 201986220339, 562912506675, 2103942223775, 5894896300851, 21927151270703, 61732155503411
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1962
- Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
Programs
-
Mathematica
Table[Sum[Binomial[n,k]Fibonacci[k]Fibonacci[n-k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Mar 04 2013 *)
Formula
a(n) = sum(binomial(n,k)*F(k)*F(n-k),k=0..floor(n/2)), n>=0, with F(n)=A000045(n).
E.g.f.: (f(x)^2 + Fs2(x^2))/2, with the e.g.f. f(x) of A000045 and the o.g.f. Fs2(x):=sum((F(n)/n!)^2*x^n,n=0..infty) of the scaled squares. f(x)^2 = 2*exp(x)*(cosh((2*phi-1)*x)-1)/5 (see A000045 for f(x)) and Fs2(x^2) = (BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) - 2*BesselI(0,2*i*x))/5, with the golden section phi:=(1+sqrt(5))/2, the complex unit i, and for BesselI see Abramowitz-Stegun (reference and link given in A008277, p. 375, eq. 9.6.10). BesselI(0,2*sqrt(y)) = hypergeom([],[1],y) is the e.g.f. of the sequence {1/n!}.
Bisection:
Comments