cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203579 Exponential (or binomial) convolution of A000032 (Lucas) with itself, divided by 2.

Original entry on oeis.org

2, 2, 7, 17, 57, 177, 577, 1857, 6017, 19457, 62977, 203777, 659457, 2134017, 6905857, 22347777, 72318977, 234029057, 757334017, 2450784257, 7930904577, 25664946177, 83053510657, 268766806017, 869747654657, 2814562533377, 9108115685377, 29474481504257
Offset: 0

Views

Author

Wolfdieter Lang, Jan 14 2012

Keywords

Examples

			With A000032 = {2,1,3,4,7,...},
  2*a(4) = 1*2*7 + 4*1*4 + 6*3*3 + 4*4*1 + 1*7*2 = 114.
		

Crossrefs

Programs

  • Mathematica
    Array[Sum[Binomial[#, k] LucasL[k] LucasL[# - k], {k, 0, #}]/2 &, 28, 0] (* Michael De Vlieger, Dec 28 2020 *)

Formula

a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=0..n)/2, n>=0, with L(n)=A000032(n).
E.g.f.: (1/2)*(exp(phi*x)+exp(-(phi-1)*x))^2 =
exp(x)*(cosh(sqrt(5)*x)+1), with the golden section phi:=(1+sqrt(5))/2. (See the e.g.f. of A000032).
a(n) = 2^(n-1)*L(n) + 1.
a(n) = 5*A014335(n) + 2. - Vladimir Reshetnikov, Oct 06 2016