cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203618 Numbers m such that (m'+1)' = m-1, where m' is the arithmetic derivative of m.

Original entry on oeis.org

1, 2, 6, 42, 104, 120, 165, 245, 272, 561, 1806, 47058, 765625, 1137501, 3874128, 9131793, 2214502422, 52495396602
Offset: 1

Views

Author

Paolo P. Lava, Jan 20 2012

Keywords

Comments

The differential equation whose solutions are the primary pseudoperfect numbers is m' = k*m-1, with k a positive integer. Let us rewrite the equation as m'+1 = k*m and then take the derivative: (m'+1)' = (k*m)' = k'*m + k*m' = k'*m + k*(k*m-1) = (k'+k^2)*m-k. Let k=1: (m'+1)' = m-1. The solutions of this equation are the primary pseudoperfect numbers plus pairs of numbers (x,y) for which x' = y-1 and y' = x-1.
A054377 is a subsequence of this sequence.
a(17) > 10^9. - Michel Marcus, Nov 05 2014
a(19) > 10^11. - Giovanni Resta, Jun 04 2016

Examples

			765625' = 1137500; (1137500 + 1)' = 1137501' = 765624 = 765625 - 1, so 765625 is a term.
1137501' = 765624; (765624 + 1)' = 765625' = 1137500 = 1137501 - 1, so 1137501 is a term.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,n,p,pfs;
    for n from 1 to i do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs);
      pfs:=ifactors(a+1)[2]; a:=(a+1)*add(op(2,p)/op(1,p),p=pfs);
      if a=n-1 then print(n); fi;
    od;
    end:
    P(10000000);
  • Mathematica
    A003415[n_]:=If[Abs[n]<2,0,n*Total[#2/#1&@@@FactorInteger[Abs[n]]]];
    Select[Range[1,100000],A003415[A003415[#]+1]==#-1&] (* Julien Kluge, Jul 08 2016 *)
  • PARI
    ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
    isok(n) = ad(ad(n)+1) == n-1; \\ Michel Marcus, Nov 05 2014

Extensions

a(17)-a(18) from Giovanni Resta, Jun 04 2016