A203618 Numbers m such that (m'+1)' = m-1, where m' is the arithmetic derivative of m.
1, 2, 6, 42, 104, 120, 165, 245, 272, 561, 1806, 47058, 765625, 1137501, 3874128, 9131793, 2214502422, 52495396602
Offset: 1
Examples
765625' = 1137500; (1137500 + 1)' = 1137501' = 765624 = 765625 - 1, so 765625 is a term. 1137501' = 765624; (765624 + 1)' = 765625' = 1137500 = 1137501 - 1, so 1137501 is a term.
Programs
-
Maple
with(numtheory); P:=proc(i) local a,n,p,pfs; for n from 1 to i do pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs); pfs:=ifactors(a+1)[2]; a:=(a+1)*add(op(2,p)/op(1,p),p=pfs); if a=n-1 then print(n); fi; od; end: P(10000000);
-
Mathematica
A003415[n_]:=If[Abs[n]<2,0,n*Total[#2/#1&@@@FactorInteger[Abs[n]]]]; Select[Range[1,100000],A003415[A003415[#]+1]==#-1&] (* Julien Kluge, Jul 08 2016 *)
-
PARI
ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]); isok(n) = ad(ad(n)+1) == n-1; \\ Michel Marcus, Nov 05 2014
Extensions
a(17)-a(18) from Giovanni Resta, Jun 04 2016
Comments