cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203797 a(n) = Pell(n) * Sum_{d|n} 1/Pell(d), where Pell(n) = A000129(n).

Original entry on oeis.org

1, 3, 6, 19, 30, 120, 170, 647, 1183, 3650, 5742, 24916, 33462, 121652, 240756, 746639, 1136690, 4707147, 6625110, 25882770, 46565244, 139849776, 225058682, 978088748, 1356970471, 4750318586, 9182205852, 29333908544, 44560482150, 188175715440, 259717522850, 994309609247
Offset: 1

Views

Author

Paul D. Hanna, Jan 13 2012

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 6*x^3 + 19*x^4 + 30*x^5 + 120*x^6 + 170*x^7 + ... where A(x) = x/(1-2*x-x^2) + x^2/(1-6*x^2+x^4) + x^3/(1-14*x^3-x^6) + x^4/(1-34*x^4+x^8) + x^5/(1-82*x^5-x^10) + x^6/(1-198*x^6+x^12) + ... + x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n, 2] * DivisorSum[n, 1/Fibonacci[#, 2] &]; Array[a, 32] (* Amiram Eldar, Aug 18 2023 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=Pell(n) * sumdiv(n, d, 1/Pell(d))}
    
  • PARI
    /* G.f. using companion Pell numbers: */
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(sum(m=1, n, x^m/(1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)}

Formula

G.f.: Sum_{n>=1} x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203 is the companion Pell numbers.