A203827 Table of coefficients of up-down polynomials P_n(m) = Sum_{i=0..floor(log_2(2n))} binomial(m,i).
1, -1, 1, -1, 0, 1, 1, -1, 1, -1, 0, 0, 1, 1, -1, 0, 2, 1, 0, -1, 2, -1, 1, -1, 1, -1, 0, 0, 0, 1, 1, -1, 0, 0, 3, 1, 0, -1, 0, 5, -1, 1, -1, 0, 3, 1, 0, 0, -1, 3, -1, 1, 0, -2, 5, -1, 0, 1, -2, 3, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 4, 1, 0, -1, 0, 0, 9
Offset: 0
Examples
Table begins 1 -1 1 -1 0 1 1 -1 1 -1 0 0 1 1 -1 0 2 1 0 -1 2 -1 1 -1 1 -1 0 0 0 1 1 -1 0 0 3 1 0 -1 0 5 -1 1 -1 0 3 1 0 0 -1 3 -1 1 0 -2 5 -1 0 1 -2 3 1 -1 1 -1 1 -1 0 0 0 0 1 1 -1 0 0 0 4 1 0 -1 0 0 9
References
- I. Niven, A combinatorial problem of finite sequences, Nieuw Arch. Wisk. 16(1968), 116-123.
Links
- V. Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS 12 (2012), article #A1.
Formula
Sum_{n=0..2^(m-1)} P_n(m) = m!;
Sum_{n=0..2^m-1} (-1)^n*P_n(m) = 0.
P_{2^m-1}(2*m) = binomial(2*m-1, m-1);
P_{2^m-1}(2*m+1) = binomial(2*m, m).
If m is an odd prime, then
(1) P_n(m) == t_n (mod m), where t_n = (-1)^A010060(n);
(2) P_((2^(m+1)-4)/6)(m) == (-1)^((m-1)/2) (mod m);
(3) P_((2^(2*m+1)-2)/6)(2*m) == 1 (mod 2*m).
For m >= 1, P_((2^(2^m+1)-2)/6)(2^m) == 1 (mod 2^m).
P_((4^m-1)/3)(2*m) = |E_(2*m)| (cf. A000364);
P_((2^(2*m-1)-1)/3) = |B_(2*m)|*4^m(4^m-1)/(2*m) (cf. A002105).
If n = 2^(k_1-1) + 2^(k_2-1) + ... + 2^(k_r-1), k_1 > k_2 > ... > k_r >= 1, then
(Recursion 1) P_n(m) = (-1)^r + Sum_{i=1..r} binomial(m,k_i)*P_(n-2^(k_i-1))(k_i) and
(Recursion 2) for h > k_1, P_(n+2^(h-1))(m) = binomial(m,h)*P_n(h) - P_n(m).
Comments