cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203854 a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^3, where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 13, 21, 79, 266, 957, 3484, 12935, 48768, 185951, 716418, 2781675, 10878520, 42789478, 169181010, 671866245, 2678678730, 10716651456, 43007270292, 173072549610, 698235680844, 2823329210391, 11439823946306, 46440709210035, 188856966693230, 769241291729020
Offset: 1

Views

Author

Paul D. Hanna, Jan 07 2012

Keywords

Examples

			G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^13 * (1-4*x^3-x^6)^21 * (1-7*x^4+x^8)^79 * (1-11*x^5-x^10)^266 * (1-18*x^6+x^12)^957 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^4 * x^n/n ) = g.f. of A203804:
F(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +...
where
log(F(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^3&]; Array[a, 30] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^3)/n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(F=exp(sum(m=1, n, Lucas(m)^4*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}

Formula

G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^4 * x^n/n), which is the g.f. of A203804.
a(n) ~ phi^(3*n) / n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 02 2017