A203905 Symmetric matrix based on (1,0,1,0,1,0,1,0,...), by antidiagonals.
1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Northwest corner: 1...0...1...0...1...0...1...0 0...1...0...1...0...1...0...1 1...0...2...0...2...0...2...0 0...1...0...2...0...2...0...2 1...0...2...0...3...0...3...0
Programs
-
Mathematica
t = {1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}]; s[k_] := t1[[k]]; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] (* A203905 *) m[i_, j_] := M[[i]][[j]]; Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
Comments