A203906
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203905.
Original entry on oeis.org
1, -1, 1, -2, 1, 1, -4, 4, -1, 1, -6, 11, -6, 1, 1, -8, 22, -24, 9, -1, 1, -10, 37, -62, 46, -12, 1, 1, -12, 56, -128, 148, -80, 16, -1, 1, -14, 79, -230, 367, -314, 130, -20, 1, 1, -16, 106, -376, 771, -920, 610, -200, 25, -1, 1, -18, 137
Offset: 1
Top of the array:
1...-1
1...-2....1
1...-4....4...-1
1...-6...11...-6....1
1...-8...22...-24...9...-1
- (For references regarding interlacing roots, see A202605.)
-
t = {1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
f[k_] := t1[[k]];
U[n_] := NestList[Most[Prepend[#, 0]] &, #,
Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
p[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A203906 *)
TableForm[Table[c[n], {n, 1, 10}]]
Table[p[n] /. x -> -1, {n, 1, 16}] (* A166516 *)
A202605
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1
The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array A202605:
1, -1;
1, -3, 1;
1, -6, 9, -1;
1, -9, 26, -24, 1;
1, -12, 52, -96, 64, -1;
1, -15, 87, -243, 326, -168, 1;
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
-
f[k_] := Fibonacci[k];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
Showing 1-2 of 2 results.
Comments