cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203906 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203905.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -4, 4, -1, 1, -6, 11, -6, 1, 1, -8, 22, -24, 9, -1, 1, -10, 37, -62, 46, -12, 1, 1, -12, 56, -128, 148, -80, 16, -1, 1, -14, 79, -230, 367, -314, 130, -20, 1, 1, -16, 106, -376, 771, -920, 610, -200, 25, -1, 1, -18, 137
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
If we omit the main diagonal of this array and ignore the signs of the entries then the resulting array, reading the rows in reverse order, appears to equal the Riordan array (1/((1 + x)*(1 - x)^3), x/(1 - x)^2), whose generating function begins 1 + (2 + t)*x + (4 + 4*t + t^2)*x^2 + (6 + 11*t + 6*t^2 + t^3)*x^3 + (9 + 24*t + 22*t^2 + 8*t^3 + t^4)*x^4 + .... - Peter Bala, Sep 17 2019

Examples

			Top of the array:
1...-1
1...-2....1
1...-4....4...-1
1...-6...11...-6....1
1...-8...22...-24...9...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #,
    Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                         (* A203906 *)
    TableForm[Table[c[n], {n, 1, 10}]]
    Table[p[n] /. x -> -1, {n, 1, 16}] (* A166516 *)