A203946
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203945.
Original entry on oeis.org
1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -5, 8, -5, 1, 1, -7, 17, -17, 7, -1, 1, -9, 30, -45, 30, -9, 1, 1, -11, 47, -98, 103, -52, 12, -1, 1, -13, 68, -183, 269, -212, 83, -15, 1, 1, -15, 93, -308, 588, -651, 399, -123, 18, -1, 1, -17, 122, -481, 1136
Offset: 1
Top of the array:
1...-1
1...-2....1
1...-3....3....-1
1...-5....8....-5....1
1...-7....17...-17...7...-1
- (For references regarding interlacing roots, see A202605.)
-
t = {1, 0, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
f[k_] := t1[[k]];
U[n_] := NestList[Most[Prepend[#, 0]] &, #,
Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
p[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A203946 *)
TableForm[Table[c[n], {n, 1, 10}]]
A202605
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Fibonacci self-fusion matrix (A202453).
Original entry on oeis.org
1, -1, 1, -3, 1, 1, -6, 9, -1, 1, -9, 26, -24, 1, 1, -12, 52, -96, 64, -1, 1, -15, 87, -243, 326, -168, 1, 1, -18, 131, -492, 1003, -1050, 441, -1, 1, -21, 184, -870, 2392, -3816, 3265, -1155, 1, 1, -24, 246, -1404, 4871, -10500, 13710
Offset: 1
The 1st principal submatrix (ps) of A202453 is {{1}} (using Mathematica matrix notation), with p(1) = 1-x and zero-set {1}.
...
The 2nd ps is {{1,1},{1,2}}, with p(2) = 1-3x+x^2 and zero-set {0.382..., 2.618...}.
...
The 3rd ps is {{1,1,2},{1,2,3},{2,3,6}}, with p(3) = 1-6x+9x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}.
...
Top of the array A202605:
1, -1;
1, -3, 1;
1, -6, 9, -1;
1, -9, 26, -24, 1;
1, -12, 52, -96, 64, -1;
1, -15, 87, -243, 326, -168, 1;
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
-
f[k_] := Fibonacci[k];
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
L[n_] := Transpose[U[n]];
F[n_] := CharacteristicPolynomial[L[n].U[n], x];
c[n_] := CoefficientList[F[n], x]
TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%]
TableForm[Table[c[n], {n, 1, 10}]]
Showing 1-2 of 2 results.
Comments