cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203992 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (A143182 in square format).

Original entry on oeis.org

1, -1, -3, -2, 1, 8, 14, 3, -1, -20, -56, -40, -4, 1, 48, 184, 224, 90, 5, -1, -112, -544, -936, -672, -175, -6, 1, 256, 1504, 3344, 3480, 1680, 308, 7, -1, -576, -3968, -10816, -14784, -10560, -3696, -504, -8, 1, 1280, 10112, 32640, 55328
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
 1... -1
-3... -1.... 1
 8.... 14... 3... -1
-20.. -56.. -40.. -4... 1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[i - j + 1, j - i + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]]  (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A143182 in square format *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]    (* A203992 *)
    TableForm[Table[c[n], {n, 1, 10}]]