A203993 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of {|i-j}, (A049581).
0, -1, -1, 0, 1, 4, 6, 0, -1, -12, -32, -20, 0, 1, 32, 120, 140, 50, 0, -1, -80, -384, -648, -448, -105, 0, 1, 192, 1120, 2464, 2520, 1176, 196, 0, -1, -448, -3072, -8320, -11264, -7920, -2688, -336, 0, 1, 1024, 8064, 25920, 43680
Offset: 1
Examples
The array T (a table if row n=0 is by convention put to 0) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... (0: 0) 1: 0 -1 2: -1 0 1 3: 4 6 0 -1 4: -12 -32 -20 0 1 5: 32 120 140 50 0 -1 6: -80 -384 -648 -448 -105 0 1 7: 192 1120 2464 2520 1176 196 0 -1 8: -448 -3072 -8320 -11264 -7920 -2688 -336 0 1 9: 1024 8064 25920 43680 41184 21384 5544 540 0 -1 10: -2304 -20480 -76160 -153600 -182000 -128128 -51480 -10560 -825 0 1 ... reformatted and extended. - _Wolfdieter Lang_, Feb 02 2018
References
- (For references regarding interlacing roots, see A202605.)
Links
- Eric Weisstein's World of Mathematics, Detour Polynomial
- Eric Weisstein's World of Mathematics, Distance Polynomial
- Eric Weisstein's World of Mathematics, Path Graph
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Mathematica
(* begin*) f[i_, j_] := Abs[i - j]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A049581 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A203993 *) TableForm[Table[c[n], {n, 1, 10}]] (* end *) CoefficientList[Table[CharacteristicPolynomial[SparseArray[{i_, j_} :> Abs[i - j], n], x], {n, 10}], x] //Flatten (* Eric W. Weisstein, Apr 07 2017 *) CoefficientList[Table[((-x)^n (x + x ChebyshevT[2 n, Sqrt[1 + 1/(2 x)]] - n ChebyshevU[n - 1, 1 + 1/x]))/(2 x), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *) CoefficientList[Table[1/4 (2 (-x)^n + (-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n + (n (-(-1 - x - Sqrt[1 + 2 x])^n + (-1 - x + Sqrt[1 + 2 x])^n))/Sqrt[1 + 2 x]), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *) CoefficientList[LinearRecurrence[{-4 - 5 x, -2 (2 + 6 x + 5 x^2), -2 x (2 + 6 x + 5 x^2), -x^3 (4 + 5 x), -x^5}, {-x, (-1 + x) (1 + x), -(2 + x) (-2 - 2 x + x^2), (-6 - 4 x + x^2) (2 + 4 x + x^2), -(4 + 6 x + x^2) (-8 - 18 x - 6 x^2 + x^3)}, 10], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
Formula
T(n, k) = [x^k] p(n,x), with p(n,x) = Determinant(M_n - x*1_n), with the n x n matrix M_n with entries M_n(i, j) = |i-j|, for n >= 1, k = 0, 1, ..., n. For p(n,x) see a comment above and the Mathematica formulas by Weisstein.- Wolfdieter Lang, Feb 02 2018
Comments