cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203997 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min{i(j+1),j(i+1)} (A203996).

Original entry on oeis.org

2, -1, 3, -8, 1, 4, -19, 20, -1, 5, -34, 69, -40, 1, 6, -53, 160, -189, 70, -1, 7, -76, 305, -552, 434, -112, 1, 8, -103, 516, -1265, 1560, -882, 168, -1, 9, -134, 805, -2496, 4235, -3828, 1638, -240, 1, 10, -169, 1184, -4445, 9646
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.

Examples

			Top of the array:
2...-1
3...-8.....1
4...-19....20....-1
5...-34....69....-40....1
6...-53....160...-189...70....-1
7...-76....305...-552...434...-112...1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[i (j + 1), j (i + 1)];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]   (* A203996 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]      (* A203997 *)
    TableForm[Table[c[n], {n, 1, 10}]]