cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204019 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max{1+j mod i, 1+i mod j} (A204018).

Original entry on oeis.org

1, -1, -3, -2, 1, 8, 14, 3, -1, -21, -64, -40, -4, 1, 40, 266, 280, 90, 5, -1, 125, -930, -1671, -896, -175, -6, 1, -2940, 854, 8600, 7228, 2352, 308, 7, -1, 35035, 37744, -27334, -50164, -24594, -5376, -504, -8, 1, -372400
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). The least zero of p(n) is -n.
For n>1, the least zero of p(n) is exactly 1-n; the greatest, for p(1) to p(5) is represented by (1,3,5.701...,9.158...13.392...).
See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
 1....-1
-3....-2......1
 8.....14.....3....-1
-21...-64....-40...-4...1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := 1 + Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A204018 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204019 *)
    TableForm[Table[c[n], {n, 1, 10}]]