A204025 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of gcd(i,j) (A003989).
1, -1, 1, -3, 1, 2, -8, 6, -1, 4, -20, 26, -10, 1, 16, -88, 134, -72, 15, -1, 32, -240, 496, -408, 143, -21, 1, 192, -1504, 3352, -3112, 1344, -284, 28, -1, 768, -6400, 16320, -18496, 10508, -3108, 480, -36, 1, 4608, -39936, 109952
Offset: 1
Examples
Top of the array: 1, -1; 1, -3, 1; 2, -8, 6, -1; 4, -20, 26, -10, 1;
References
- (For references regarding interlacing roots, see A202605.)
Programs
-
Mathematica
f[i_, j_] := GCD[i, j] m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6 X 6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A003989 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204025 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments