A204026 Symmetric matrix based on f(i,j)=min(F(i+1),F(j+1)), where F=A000045 (Fibonacci numbers), by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 5, 3, 2, 1, 1, 2, 3, 5, 5, 3, 2, 1, 1, 2, 3, 5, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 13, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 13, 13, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8, 13, 21, 13, 8, 5, 3, 2, 1, 1, 2, 3, 5, 8
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 2 2 2 2 2 1 2 3 3 3 3 1 2 3 5 5 5 1 2 3 5 8 8 1 2 3 5 8 13
Programs
-
Mathematica
f[i_, j_] := Min[Fibonacci[i + 1], Fibonacci[j + 1]] m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204026 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204027 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments