A204028 Symmetric matrix based on f(i,j)=min(3i-2,3j-2), by antidiagonals.
1, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 4, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 10, 7, 4, 1, 1, 4, 7, 10, 10, 7, 4, 1, 1, 4, 7, 10, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 16, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 16, 16, 13, 10, 7, 4, 1, 1, 4, 7, 10, 13, 16, 19, 16
Offset: 1
Examples
Northwest corner: 1...1...1...1....1....1 1...4...4...4....4....4 1...4...7...7....7....7 1...4...7...10...10...10 1...4...7...10...13...13
Programs
-
Mathematica
f[i_, j_] := Min[3 i - 2, 3 j - 2]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[6]] (* 6x6 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204028 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204029 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments