A204030 Symmetric matrix based on f(i,j) = gcd(i+1, j+1), by antidiagonals.
2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Northwest corner: 2 1 2 1 2 1 2 1 1 3 1 1 3 1 1 3 2 1 4 1 2 1 4 1 1 1 1 5 1 1 1 1 2 3 2 1 6 1 2 3 1 1 1 1 1 7 1 1
Programs
-
Mathematica
f[i_, j_] := GCD[i + 1, j + 1]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8 X 8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204030 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204111 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments