A204057 Triangle derived from an array of f(x), Narayana polynomials.
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 45, 42, 1, 1, 6, 29, 100, 197, 132, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1, 1, 10, 89, 680, 4237, 20076, 65445, 124996, 103049, 16796, 1
Offset: 1
Examples
First few rows of the array = 1,....1,....1,.....1,.....1,...; = A000012 1.....2,....5,....14,....42,...; = A000108 1,....3,...11,....45,...197,...; = A001003 1,....4,...19,...100,...562,...; = A007564 1,....5,...29,...185,..1257,...; = A059231 1,....6,...41,...306,..2426,...; = A078009 ... First few rows of the triangle = 1; 1, 1; 1, 2, 1; 1, 3, 5, 1; 1, 4, 11, 14, 1; 1, 5, 19, 45, 42, 1; 1, 6, 29, 100, 197, 132, 1; 1, 7, 41, 185, 562, 903, 429, 1; 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1; 1, 9, 71, 469, 2426, 8952, 20071, 20793, 4862, 1; ... Examples: column 4 of the array = A090197: (1, 14, 45, 100,...) = N(4,n) where N(4,x) is the 4th Narayana polynomial. Term (5,3) = 29 is the upper left term of M^3, where M = the infinite square production matrix: 1, 4, 0, 0, 0,... 1, 1, 4, 0, 0,... 1, 1, 1, 4, 0,... 1, 1, 1, 1, 4,... ... generating row 5, A059231: (1, 5, 29, 185,...).
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
A204057:= func< n, k | n eq 0 select 1 else (&+[ Binomial(n, j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >; [A204057(k, n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
-
Mathematica
Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
-
Sage
def A204057(n, k): return 1 if n==0 else sum( binomial(n, j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1]) flatten([[A204057(k, n-k) for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Feb 16 2021
Formula
The triangle is the set of antidiagonals of an array in which columns are f(x) of the Narayana polynomials; with column 1 = (1, 1, 1,...) column 2 = (1, 2, 3,..), column 3 = A028387, column 4 = A090197, then A090198, A090199,...
The array by rows is generated from production matrices of the form:
1, (N-1)
1, 1, (N-1)
1, 1, 1, (N-1)
1, 1, 1, 1, (N-1)
...(infinite square matrices with the rest zeros); such that if the matrix is M, n-th term in row N is the upper left term of M^n.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = Hypergeometric2F1([1-k, -k], [2], n-k).
Sum_{k=1..n} T(n, k) = A132745(n) - 1. (End)
Extensions
Corrected by Philippe Deléham, Jan 13 2012
Comments