cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204111 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(i+1, j+1) (A204030).

Original entry on oeis.org

2, -1, 5, -5, 1, 10, -20, 9, -1, 44, -100, 62, -14, 1, 104, -328, 330, -128, 20, -1, 656, -2208, 2476, -1176, 263, -27, 1, 2624, -10144, 13992, -8880, 2804, -452, 35, -1, 15744, -66112, 102384, -75760, 29512, -6336, 744, -44, 1, 67584
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
   2,   -1;
   5,   -5,    1;
  10,  -20,    9,   -1;
  44, -100,   62,  -14,    1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[i + 1, j + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204030 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]         (* A204111 *)
    TableForm[Table[c[n], {n, 1, 10}]]