A204116 Symmetric matrix based on f(i,j) = gcd(2^i-1, 2^j-1), by antidiagonals.
1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 1, 1, 1, 7, 1, 1, 7, 1, 1, 1, 3, 1, 3, 31, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 15, 1, 63, 1, 15, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 127, 3, 1, 3, 1, 3, 1, 1, 1, 7, 1
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 3 1 3 1 1 7 1 1 3 1 15
Programs
-
Mathematica
f[i_, j_] := GCD[2^i - 1, 2^j - 1]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8 X 8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204116 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204117 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments