A204117 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(2^i-1, 2^j-1) (A204116).
1, -1, 2, -4, 1, 12, -28, 11, -1, 144, -360, 182, -26, 1, 4320, -11088, 5940, -984, 57, -1, 233280, -616032, 348768, -64728, 4506, -120, 1, 29393280, -78086592, 44775936, -8554608, 636444, -19740, 247, -1, 7054387200
Offset: 1
Examples
Top of the array: 1, -1; 2, -4, 1; 12, -28, 11, -1; 144, -360, 182, -26, 1;
References
- (For references regarding interlacing roots, see A202605.)
Programs
-
Mathematica
f[i_, j_] := GCD[2^i - 1, 2^j - 1]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8 X 8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204116 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204117 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments