A204121 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(prime(i+1), prime(j+1)) (A204120).
3, -1, 14, -8, 1, 92, -68, 15, -1, 968, -816, 230, -26, 1, 12096, -11248, 3740, -564, 39, -1, 199296, -198400, 73544, -13192, 1222, -56, 1, 3679488, -3877632, 1567824, -320304, 36160, -2280, 75, -1, 82607616, -91008000
Offset: 1
Examples
Top of the array: 3, -1; 14, -8, 1; 92, -68, 15, -1; 968, -816, 230, -26, 1;
References
- (For references regarding interlacing roots, see A202605.)
Programs
-
Mathematica
f[i_, j_] := GCD[Prime[i + 1], Prime[j + 1]]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8 X 8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204120 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204121 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments