A204123 Symmetric matrix based on f(i,j)=max([i/j],[j/i]), where [ ]=floor, by antidiagonals.
1, 2, 2, 3, 1, 3, 4, 1, 1, 4, 5, 2, 1, 2, 5, 6, 2, 1, 1, 2, 6, 7, 3, 1, 1, 1, 3, 7, 8, 3, 2, 1, 1, 2, 3, 8, 9, 4, 2, 1, 1, 1, 2, 4, 9, 10, 4, 2, 1, 1, 1, 1, 2, 4, 10, 11, 5, 3, 2, 1, 1, 1, 2, 3, 5, 11, 12, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 12, 13, 6, 3, 2, 1, 1, 1, 1, 1, 2, 3, 6, 13, 14, 6, 4, 2
Offset: 1
Examples
Northwest corner: 1 2 3 4 5 6 2 1 1 2 2 3 3 1 1 1 1 2 4 2 1 1 1 1 5 2 1 1 1 1 6 3 2 1 1 1
Links
- G. C. Greubel, Table of n, a(n) for the first 100 aintidiagonals
Programs
-
Mathematica
f[i_, j_] := Max[Floor[i/j], Floor[j/i]]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204123 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204124 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments