A204130 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=(L(i) if i=j and 1 otherwise) (A204129).
1, -1, 2, -4, 1, 6, -16, 8, -1, 36, -108, 69, -15, 1, 360, -1152, 834, -230, 26, -1, 6120, -20304, 15726, -4890, 693, -44, 1, 171360, -580752, 467724, -155524, 24797, -1963, 73, -1, 7882560, -27057312, 22300752, -7709504
Offset: 1
Examples
Top of the array: 1....-1 2....-4.....1 6....-16....8....-1 36...-108...69...-15...1
References
- (For references regarding interlacing roots, see A202605.)
Programs
-
Mathematica
f[i_, j_] := 1; f[i_, i_] := LucasL[i]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204129 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204130 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments