A204155 Array read by rows: row n lists the coefficients of the characteristic polynomial of the n-th principal submatrix of max(2i-j, 2j-i), as in A204154.
1, -1, -7, -3, 1, 33, 39, 6, -1, -135, -255, -125, -10, 1, 513, 1323, 1092, 305, 15, -1, -1863, -6075, -7047, -3444, -630, -21, 1, 6561, 25839, 38610, 27135, 8946, 1162, 28, -1, -22599, -104247, -190593, -175230
Offset: 1
Examples
Top of the array: 1, -1; -7, -3, 1; 33, 39, 6, -1; -135, -255, -125, -10, 1;
References
- (For references regarding interlacing roots, see A202605.)
Links
- Robert Israel, Table of n, a(n) for n = 1..10010 (rows 1 to 140, flattened)
Programs
-
Maple
f:= proc(n) local P,lambda,i; P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(Matrix(n,n,(i,j) -> max(2*i-j,2*j-i)),lambda); seq(coeff(P,lambda,i),i=0..n); end proc: map(f, [$1..20]); # Robert Israel, Dec 03 2017
-
Mathematica
f[i_, j_] := Max[2 i - j, 2 j - i]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204154 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204155 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments