A204181 Symmetric matrix based on f(i,j) defined by f(i,1)=f(1,j)=1; f(i,i)= 2i-1; f(i,j)=0 otherwise; by antidiagonals.
1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 1, 0, 5, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 7, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 9, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 11, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 1 0 5 0 0 0 0 0 1 0 0 7 0 0 0 0 1 0 0 0 9 0 0 0
Programs
-
Mathematica
f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2 i - 1; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204181 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204182 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments