cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204201 Triangle based on (0,1/3,1) averaging array.

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 15, 22, 1, 7, 21, 37, 46, 1, 8, 28, 58, 83, 94, 1, 9, 36, 86, 141, 177, 190, 1, 10, 45, 122, 227, 318, 367, 382, 1, 11, 55, 167, 349, 545, 685, 749, 766, 1, 12, 66, 222, 516, 894, 1230, 1434, 1515, 1534, 1, 13, 78, 288, 738, 1410
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

For a1, let
t(n,1)=[a+t(n-1,1)]/2,
t(n,n)=[b+t(n-1,n-1)]/2,
t(n,k)=[t(n-1,k-1)+t(n-1,k)]/2 for 2<=k<=n-1.
We call (t(n,k)) the (a,r,b) averaging array. If a and b
are integers and r is a rational number, then multiplying
row n of (t(n,k)) by the LCM of its denominators yields a
triangle of integers; A204201 arises in this manner from
(a,r,b)=(0,1/3,1).
...
Guide to related arrays:
(a,r,b).........triangle
(0,1/2,1).......A054143
(0,1/3,1).......A204201
(0,2/3,1).......A204202
(0,1/4,1).......A204203
(0,3/4,1).......A204204
(0,1/5,1).......A204205
(1,3/2,2).......A204206
(1,2,3).........A204207

Examples

			The (0,1/3,1) averaging array has these first four rows:
1/3
1/6....2/3
1/12...5/12...5/6
1/24...1/4....5/8...11/12.
Multiplying those rows by 3,6,12,24, respectively:
1
1...4
1...5...10
1...6...15...22
The first nine rows:
1
1...4
1...5...10
1...6...15...22
1...7...21...37...46
1...8...28...58...83...94
1...9...36...86...141..177..190
1...10..45...122..227..318..367..382
1...11..55...167..349..545..685..749..766
		

Crossrefs

Cf. A204202.

Programs

  • Mathematica
    a = 0; r = 1/3; b = 1;
    t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]   (* averaging array *)
    u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u]             (* A204102 triangle *)
    Flatten[u]               (* A204201 sequence *)

Formula

From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A033484(n-1).
Sum{k=1..n} T(n,k) = A053220(n).
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=4, T(n,k)=0 if k<1 or if k>n. (End)