A204203 Triangle based on (0,1/4,1) averaging array.
1, 1, 5, 1, 6, 13, 1, 7, 19, 29, 1, 8, 26, 48, 61, 1, 9, 34, 74, 109, 125, 1, 10, 43, 108, 183, 234, 253, 1, 11, 53, 151, 291, 417, 487, 509, 1, 12, 64, 204, 442, 708, 904, 996, 1021, 1, 13, 76, 268, 646, 1150, 1612, 1900, 2017, 2045, 1, 14, 89, 344, 914
Offset: 1
Examples
First six rows: 1 1...5 1...6...13 1...7...19...29 1...8...26...48...61 1...9...34...74...109...125
Crossrefs
Cf. A204201.
Programs
-
Mathematica
a = 0; r = 1/4; b = 1; t[1, 1] = r; t[n_, 1] := (a + t[n - 1, 1])/2; t[n_, n_] := (b + t[n - 1, n - 1])/2; t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; u[n_] := Table[t[n, k], {k, 1, n}] Table[u[n], {n, 1, 5}] (* averaging array *) u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}]; TableForm[u] (* A204203 triangle *) Flatten[u] (* A204203 sequence *)
Formula
From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A036563(n+1).
Sum_{k=1..n} T(n,k) = A014480(n-1).
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. (End)
Comments