A204207 Triangle based on (1,2,3) averaging array.
2, 3, 5, 5, 8, 11, 9, 13, 19, 23, 17, 22, 32, 42, 47, 33, 39, 54, 74, 89, 95, 65, 72, 93, 128, 163, 184, 191, 129, 137, 165, 221, 291, 347, 375, 383, 257, 266, 302, 386, 512, 638, 722, 758, 767, 513, 523, 568, 688, 898, 1150, 1360, 1480, 1525, 1535, 1025
Offset: 1
Examples
First six rows: 2 3....5 5....8....11 9....13...19...23 17...22...32...42...47 33...39...54...74...89...95
Crossrefs
Cf. A204201.
Programs
-
Mathematica
a = 1; r = 2; b = 3; t[1, 1] = r; t[n_, 1] := (a + t[n - 1, 1])/2; t[n_, n_] := (b + t[n - 1, n - 1])/2; t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; u[n_] := Table[t[n, k], {k, 1, n}] Table[u[n], {n, 1, 5}] (* averaging array *) u = Table[2 (1/2) (1/r) 2^n*u[n], {n, 1, 12}]; TableForm[u] (* A204207 triangle *) Flatten[u] (* A204207 sequence *)
Formula
T(n,n) = A083329(n). - Philippe Deléham, Dec 24 2013
T(n,1) = A000051(n-1). - Philippe Deléham, Dec 24 2013
Sum_{k=1..n} T(n,k)=A036289(n). - Philippe Deléham, Dec 24 2013
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k-1) - 2*T(n-2,k-2), T(1,1)=2, T(2,1)=3, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. - Philippe Deléham, Dec 24 2013
Extensions
Example corrected by Philippe Deléham, Dec 22 2013
Comments