A204209 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 4.
1, 5, 25, 155, 1025, 7167, 51945, 387000, 2944860, 22791189, 178840639, 1419569398, 11377983292, 91957314063, 748575327757, 6132254500856, 50514620902564, 418174191239443, 3477075679541185, 29026557341147912, 243184916545458556
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..3....3....3....2....1....2....4....4....3....3....2....2....0....1....4....4 ..0....2....5....1....3....0....2....2....2....5....1....0....3....5....3....6 ..0....1....6....2....4....3....1....3....3....2....2....1....3....3....1....3 ..3....3....3....2....3....3....3....4....2....3....0....1....3....1....2....0 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
Programs
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-9j + 5i - 1, 4i - 9j] (-1)^j, {j, 0, (4i)/9}]) a[n - i], {i, 1, n}]/n]; a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
Maxima
a(n):=if n=0 then 1 else sum((sum(binomial(i,j)*binomial(-9*j+5*i-1,4*i-9*j)*(-1)^j,j,0,(4*i)/9))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
Formula
a(n) = Sum_{i=1..n} ((Sum_{j=0..(4*i)/9} (binomial(i,j)*binomial(-9*j+5*i-1,4*i-9*j)*(-1)^j))*a(n-i))/n. - Vladimir Kruchinin, Apr 06 2017
Comments