cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204219 Primes whose binary reversal is not prime.

Original entry on oeis.org

2, 19, 59, 79, 89, 103, 109, 137, 139, 149, 157, 179, 191, 211, 239, 241, 271, 281, 293, 311, 317, 347, 367, 379, 389, 397, 401, 419, 439, 457, 467, 499, 523, 541, 547, 557, 563, 569, 587, 593, 607, 613, 641, 647, 659, 673, 719, 733, 743, 751, 761, 769, 787, 809, 811, 829, 859, 863, 877, 887, 919, 929, 971, 977, 983, 991, 997
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2012

Keywords

Crossrefs

Complement of A074832 in A000040.
Cf. A076056, the base 10 equivalent.

Programs

  • Mathematica
    a = {}; For[n = 1, n <= 1000, n++, If[PrimeQ[n], {d = Reverse[ IntegerDigits[n,2]]; If[!PrimeQ[FromDigits[d,2]], AppendTo[a, n]]}]]; a (* Hasler *)
    Select[Prime[Range[170]], Not[PrimeQ[FromDigits[Reverse[IntegerDigits[#, 2]], 2]]] &] (* Alonso del Arte, Jan 13 2012 *)
  • PARI
    forprime(p=1,1e3,if(!isprime(sum(i=1,#b=binary(p),b[i]<
    				
  • PARI
    isok(k) = isprime(k) && !isprime(fromdigits(Vecrev(binary(k)), 2)); \\ Michel Marcus, Feb 19 2021
    
  • Python
    from sympy import isprime, primerange
    def ok(p): return not isprime(int(bin(p)[:1:-1], 2))
    def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
    print(aupto(1000)) # Michael S. Branicky, Feb 19 2021