cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A204237 Symmetric matrix given by f(i,j)=max(3i-j,3j-i).

Original entry on oeis.org

2, 5, 5, 8, 4, 8, 11, 7, 7, 11, 14, 10, 6, 10, 14, 17, 13, 9, 9, 13, 17, 20, 16, 12, 8, 12, 16, 20, 23, 19, 15, 11, 11, 15, 19, 23, 26, 22, 18, 14, 10, 14, 18, 22, 26, 29, 25, 21, 17, 13, 13, 17, 21, 25, 29, 32, 28, 24, 20, 16, 12, 16, 20, 24, 28, 32, 35, 31, 27, 23
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Examples

			Northwest corner:
2....5....8....11...14...17
5....4....7....10...13...16
8....7....6....9....12...15
11...10...9....8....11...14
14...13...12...11...10...13
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[3 i - j, 3 j - i];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]  (* A204237 *)
    Table[Det[m[n]], {n, 1, 22}]  (* A204238 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 14}] (* A204239 *)

A204239 Permanent of the n-th principal submatrix of A204237.

Original entry on oeis.org

2, 33, 1112, 69908, 6960472, 1010678724, 201542214592, 52862893123648, 17646889124736128, 7306075691359891008, 3673978840975236778496, 2205779786212911066883328, 1558502652244224074264296960
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[3 i - j, 3 j - i];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204237 *)
    Table[Det[m[n]], {n, 1, 22}]  (* A204238 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 14}] (* A204239 *)

A204243 Determinant of the n-th principal submatrix of A204242.

Original entry on oeis.org

1, 2, 11, 144, 4149, 251622, 31340799, 7913773980, 4024015413705, 4106387069191890, 8395359475529822355, 34357677843892688699400, 281336437060919094044274525, 4608419756389534634440592965950, 150992374805715685629827976712244775
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> (1 - add(1/(2^i-1),i=2..n))*mul(2^i-1,i=2..n):
    seq(f(n),n=1..30); # Robert Israel, Nov 30 2015
  • Mathematica
    f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204242 *)
    Table[Det[m[n]], {n, 1, 15}]  (* A204243 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]   (* A203011 *)
  • PARI
    vector(20, n, matdet(matrix(n, n, i, j, if(i==1, 1, if(j==1, 1, if(i==j, 2^i-1)))))) \\ Colin Barker, Nov 27 2015

Formula

a(n) = (1 - Sum_{k=2..n} 1/(2^k-1)) * Product_{k=2..n} (2^k-1) = 2*A005329(n) - A203011(n). - Robert Israel, Nov 30 2015
Showing 1-3 of 3 results.