A204242 Infinite symmetric matrix given by f(i,1)=1, f(1,j)=1, f(i,i)=2^i-1 and f(i,j)=0 otherwise, read by antidiagonals.
1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 1, 0, 7, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 15, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 31, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 63, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 127, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 3 0 0 1 0 7 0 1 0 0 15
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) V:= Vector(N): V[[seq(k*(k+1)/2, k= 1..floor((sqrt(8*N+1)-1)/2))]]:= 1: V[[seq(1+k*(k+1)/2, k=1..floor((sqrt(8*N-7)-1)/2))]]:= 1: V[[seq(1+2*k+2*k^2, k=0..floor((sqrt(2*N-1)-1)/2))]]:=
: convert(V,list); # Robert Israel, Nov 30 2015 -
Mathematica
f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A204242 *) Table[Det[m[n]], {n, 1, 15}] (* A204243 *) Permanent[m_] := With[{a = Array[x, Length[m]]}, Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 15}] (* A203011 *)
Formula
From Robert Israel, Nov 30 2015: (Start)
a(k*(k+1)/2) = a(1 + k*(k+1)/2) = 1.
a(2*k^2 + 2*k + 1) = 2^(k+1) - 1.
a(n) = 0 otherwise. (End)
Extensions
Name edited by Robert Israel, Nov 30 2015