cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204242 Infinite symmetric matrix given by f(i,1)=1, f(1,j)=1, f(i,i)=2^i-1 and f(i,j)=0 otherwise, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 1, 0, 7, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 15, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 31, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 63, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 127, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Examples

			Northwest corner:
1 1 1 1
1 3 0 0
1 0 7 0
1 0 0 15
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    V:= Vector(N):
    V[[seq(k*(k+1)/2, k= 1..floor((sqrt(8*N+1)-1)/2))]]:= 1:
    V[[seq(1+k*(k+1)/2, k=1..floor((sqrt(8*N-7)-1)/2))]]:= 1:
    V[[seq(1+2*k+2*k^2, k=0..floor((sqrt(2*N-1)-1)/2))]]:=
        :
    convert(V,list); # Robert Israel, Nov 30 2015
  • Mathematica
    f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204242 *)
    Table[Det[m[n]], {n, 1, 15}]  (* A204243 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]   (* A203011 *)

Formula

From Robert Israel, Nov 30 2015: (Start)
a(k*(k+1)/2) = a(1 + k*(k+1)/2) = 1.
a(2*k^2 + 2*k + 1) = 2^(k+1) - 1.
a(n) = 0 otherwise. (End)

Extensions

Name edited by Robert Israel, Nov 30 2015