A204275 G.f.: Product_{n>=1} (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203 is the companion Pell numbers.
1, 2, 5, 26, 57, 222, 698, 2096, 6038, 19730, 58915, 169952, 516024, 1484958, 4397513, 13029558, 37094682, 106442928, 311875984, 879620854, 2522107990, 7229956352, 20398904648, 57543374566, 163053304047, 457604617760, 1283583473614, 3606627675050
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 57*x^4 + 222*x^5 + 698*x^6 +... where A(x) = (1+2*x-x^2) * (1+6*x^2+x^4) * (1+14*x^3-x^6) * (1+34*x^4+x^8) * (1+82*x^5-x^10) * (1+198*x^6+x^12) *...* (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) *... and 1/A(x) = (1-2*x-x^2) * (1-14*x^3-x^6) * (1-82*x^5-x^10) * (1-478*x^7-x^14) * (1-2786*x^9-x^18) * (1-16238*x^11-x^22) *...* (1 - A002203(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *... Also, the logarithm of the g.f. equals the series: log(A(x)) = 1*2*x + 1*6*x^2/2 + 4*14*x^3/3 + 1*34*x^4/4 + 6*82*x^5/5 + 4*198*x^6/6 + 8*478*x^7/7 + 1*1154*x^8/8 +...+ A000593(n)*A002203(n)*x^n/n +... The companion Pell numbers (starting at offset 1) begin: A002203 = [2,6,14,34,82,198,478,1154,2786,6726,16238,...] and form the logarithm of a g.f. for Pell numbers: log(1/(1-2*x-x^2)) = 2*x + 6*x^2/2 + 14*x^3/3 + 34*x^4/4 + 82*x^5/5 +...
Links
- Eric Weisstein's World of Mathematics, Euler Identity.
Programs
-
PARI
/* Subroutine used in PARI programs below: */ {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
PARI
{a(n)=polcoeff(prod(k=1,n,1+A002203(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}
-
PARI
{a(n)=polcoeff(1/prod(k=1,n,1-A002203(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}
-
PARI
/* Exponential form using sum of odd divisors of n: */ {A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))} {a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
Comments