cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204290 E.g.f. A(x) satisfies: Sum_{n>=1} Moebius(n) * A(x)^n/n = x.

Original entry on oeis.org

1, 1, 5, 35, 379, 4969, 81605, 1570715, 35014891, 882837361, 24895264085, 775645354835, 26471069590939, 981882918161209, 39334966906021925, 1692480890859290315, 77845165565219861131, 3811434080897211664321, 197923606218617044173365
Offset: 1

Views

Author

Paul D. Hanna, Jan 13 2012

Keywords

Comments

Related identity: Sum_{n>=1} Moebius(n)/n^s = 1/(Sum_{n>=1} 1/n^s).

Examples

			E.g.f.: x + x^2/2! + 5*x^3/3! + 35*x^4/4! + 379*x^5/5! + 4969*x^6/6! +...
where the series reversion of the e.g.f. begins:
x - x^2/2 - x^3/3 - x^5/5 + x^6/6 - x^7/7 + x^10/10 - x^11/11 - x^13/13 + x^14/14 + x^15/15 - x^17/17 - x^19/19 + x^21/21 +...+ Moebius(n)*x^n/n +...
		

Crossrefs

Cf. A008683.

Programs

  • PARI
    {a(n)=n!*polcoeff(serreverse(sum(m=1,n,moebius(m)*x^m/m)+x*O(x^n)),n)}

Formula

E.g.f.: Series_Reversion( Sum_{n>=1} Moebius(n)*x^n/n ).