A204290 E.g.f. A(x) satisfies: Sum_{n>=1} Moebius(n) * A(x)^n/n = x.
1, 1, 5, 35, 379, 4969, 81605, 1570715, 35014891, 882837361, 24895264085, 775645354835, 26471069590939, 981882918161209, 39334966906021925, 1692480890859290315, 77845165565219861131, 3811434080897211664321, 197923606218617044173365
Offset: 1
Keywords
Examples
E.g.f.: x + x^2/2! + 5*x^3/3! + 35*x^4/4! + 379*x^5/5! + 4969*x^6/6! +... where the series reversion of the e.g.f. begins: x - x^2/2 - x^3/3 - x^5/5 + x^6/6 - x^7/7 + x^10/10 - x^11/11 - x^13/13 + x^14/14 + x^15/15 - x^17/17 - x^19/19 + x^21/21 +...+ Moebius(n)*x^n/n +...
Crossrefs
Cf. A008683.
Programs
-
PARI
{a(n)=n!*polcoeff(serreverse(sum(m=1,n,moebius(m)*x^m/m)+x*O(x^n)),n)}
Formula
E.g.f.: Series_Reversion( Sum_{n>=1} Moebius(n)*x^n/n ).
Comments