cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204385 G.f.: Sum_{n>=1} moebius(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 1, 4, 6, 28, 22, 168, 204, 788, 1108, 5740, 4356, 33460, 39914, 149296, 235416, 1136688, 862466, 6625108, 7452408, 30662688, 46594942, 225058680, 170763912, 1266505772, 1583313340, 6116296036, 9119790204, 44560482148, 30146578648, 259717522848, 313506783024
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the identity: x = Sum_{n>=1} moebius(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)).

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 6*x^4 + 28*x^5 + 22*x^6 + 168*x^7 + 204*x^8 +...
where A(x) = x/(1-2*x-x^2) - x^2/(1-6*x^2+x^4) - x^3/(1-14*x^3-x^6) - x^5/(1-82*x^5-x^10) + x^6/(1-198*x^6+x^12) +...+ moebius(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    {a(n)=polcoeff(sum(m=1,n,moebius(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

a(2^n) = A001109(2^(n-1)) for n>=1, where the g.f. of A001109 is x/(1-6*x+x^2).