cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204418 Periodic sequence 1,0,1,..., arranged in a triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 15 2012

Keywords

Comments

Binomial transform is A130781.
Row sums: 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, ... = A004396(n+1) = A131737 (n+2) .
Diagonal sums: 1, 0, 2, 1, 1, 3, 3, 1, 5, 3, 2, 6, 5, 2, 8, 5, 3, 9, 7, 3, 11, 7, 4, 12, 9, 4, 14, 9, 5, 15, ..
Essentially the same as A141571 and A011655. - R. J. Mathar, Jan 16 2012
As sequence a(n) this is the characteristic sequence for the mod m reduced odd numbers (i.e., gcd(2*n+1,m)=1, n >= 0) for each modulus m from 3*A003586 = [3,6,9,12,18,24,27,36,48,...]. - Wolfdieter Lang, Feb 04 2012
Disregarding the triangle: a(A173732(n)) = 1. - Reinhard Zumkeller, Apr 29 2012

Examples

			Triangle begins:
  1;
  0, 1;
  1, 0, 1;
  1, 0, 1, 1;
  0, 1, 1, 0, 1;
  1, 0, 1, 1, 0, 1;
  1, 0, 1, 1, 0, 1, 1;
  0, 1, 1, 0, 1, 1, 0, 1;
  1, 0, 1, 1, 0, 1, 1, 0, 1;
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A011655.

Programs

Formula

If k==0 mod(3), T(n+k,k) = 1, 0, 1, 1, 0, 1, 1, 0, 1, ... (A204418)
If k==1 mod(3), T(n+k,k) = 1, 0, 0, 1, 0, 0, 1, 0, 0, ... (A079978)
If n==2 mod(3), T(n+k,k) = 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
a(A016777(n)) = 0.
G.f.:(1+x^2)/(1-x^3).
G.f.: U(0) where U(k)= 1 + x^2/(1 - x/(x + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 17 2012