A204418 Periodic sequence 1,0,1,..., arranged in a triangle.
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 0, 1; 1, 0, 1, 1; 0, 1, 1, 0, 1; 1, 0, 1, 1, 0, 1; 1, 0, 1, 1, 0, 1, 1; 0, 1, 1, 0, 1, 1, 0, 1; 1, 0, 1, 1, 0, 1, 1, 0, 1;
References
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Crossrefs
Cf. A011655.
Programs
-
PARI
a(n)=n%3!=1 \\ Charles R Greathouse IV, Jul 13 2016
Formula
If k==0 mod(3), T(n+k,k) = 1, 0, 1, 1, 0, 1, 1, 0, 1, ... (A204418)
If k==1 mod(3), T(n+k,k) = 1, 0, 0, 1, 0, 0, 1, 0, 0, ... (A079978)
If n==2 mod(3), T(n+k,k) = 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (A000012)
a(A016777(n)) = 0.
G.f.:(1+x^2)/(1-x^3).
G.f.: U(0) where U(k)= 1 + x^2/(1 - x/(x + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 17 2012
Comments