A204456 Coefficient array of numerator polynomials of the o.g.f.s for the sequence of odd numbers not divisible by a given prime.
1, 1, 1, 4, 1, 1, 2, 4, 2, 1, 1, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1
Examples
The array starts m,p\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 1,2: 1 1 2,3: 1 4 1 3,5: 1 2 4 2 1 4,7: 1 2 2 4 2 2 1 5,11: 1 2 2 2 2 4 2 2 2 2 1 6,13: 1 2 2 2 2 2 4 2 2 2 2 2 1 7,17: 1 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 1 ... N(p(4);x) = N(7;x) = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 2*x^5 + x^6 = (1+x^2)*(1+2*x+x^2+2*x^3+x^4). G(p(4);x) = G(7;x) = x*N(7;x)/((1-x^6)*(1-x)), the o.g.f. of A162699. Compare this with the o.g.f. given there by _R. J. Mathar_, where the numerator is factorized also. First difference rule: m=4: {a(7;n)} starts {0,1,3,5,9,...}, the first differences are {1,2,2,4,...}, giving the first (7+1)/2=4 entries of row number m=4 of the array. The other entries follow by symmetry. - _Wolfdieter Lang_, Jan 26 2012
Formula
a(m,k) = [x^k]N(p(m);x), m>=1, k=0,...,p(m)-1, with the numerator polynomial N(p(m);x) for the o.g.f. G(p(m);x) of the sequence of odd numbers not divisible by the m-th prime p(m)=A000040(m). See the comment above.
Row m has the number pattern (exponents on a number indicate how many times this number appears consecutively):
m=1, p(1)=2: 1 1, and for m>=2:
m, p(m): 1 2^((p(m)-3)/2) 4 2^((p(m)-3)/2) 1.
a(m,k) = a(p(m);k+1) - a(p(m);k), m>=2, k=0,...,(p(m)-1)/2,
with the corresponding sequence {a(p(m);n)} of the odd numbers not divisible by p(m), with a(p(m);0):=0. For m=1: a(1,0) = a(2;1)-a(2;0). By symmetry around the center: a(m,(p(m)-1)/2+k) = a(m,(p(m)-1)/2-k), k=1,...,(p(m)-1)/2, m>=2. For m=1: a(1,1)=a(1,0). See a comment above. - Wolfdieter Lang, Jan 26 2012
Comments