cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204458 Odd numbers not divisible by 17.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141
Offset: 1

Views

Author

Wolfdieter Lang, Feb 07 2012

Keywords

Comments

For the general case of odd numbers not divisible by a prime see a comment on A204454. There the o.g.f.s and the formulas are given.
The numerator polynomial of the o.g.f. given below has coefficients 1,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,1. See the row no. 7 of the array A204456. The first nine numbers are the first differences of the sequence if one starts with a(0):=0. The remaining ones are obtained by mirroring around the central number 4.
Compare with A192861: certain numbers from here are missing there, like 35, 49, 53, 71, 89, 97, 99, .. and others are missing here like 51, 85, 119, ...
Numbers coprime to 34. The asymptotic density of this sequence is 8/17. - Amiram Eldar, Oct 20 2020

Crossrefs

Cf. A204454 (also for more crossrefs), A204457.

Programs

  • Mathematica
    Select[Range[141], CoprimeQ[#, 34] &] (* Amiram Eldar, Oct 20 2020 *)

Formula

O.g.f.: x*(1 + x^16 + 2*x*(1+x^8)*(Sum_{k=0..6} x^k) + 4*x^8)/((1-x^16)*(1-x)). The denominator can be factored.
a(n) = 2*n-1 + 2*floor((n+7)/16) = 2*n+1 + 2*floor((n-9)/16), n>=1. Note that for n=0 this is -1, but for the o.g.f. with start x^0 one uses a(0)=0.
a(n) = a(n-1) + a(n-16) - a(n-17). - Wesley Ivan Hurt, Oct 20 2020