A204469 Number of 5-element subsets that can be chosen from {1,2,...,10*n+5} having element sum 25*n+15.
1, 141, 1394, 5910, 17053, 39361, 78602, 141702, 236833, 373309, 561704, 813722, 1142341, 1561651, 2087034, 2734970, 3523243, 4470721, 5597592, 6925112, 8475873, 10273519, 12343044, 14710482, 17403231, 20449711, 23879724, 27724080, 32014983, 36785631, 42070632
Offset: 0
Examples
a(0) = 1 because there is 1 5-element subset that can be chosen from {1,2,3,4,5} having element sum 15: {1,2,3,4,5}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Bisection of column k=5 of A204459.
Programs
-
Maple
a:= n-> (Matrix(11, (i, j)-> `if`(i=j-1, 1, `if`(i=11, [1, -2, 0, 1, 0, 2, -2, 0, -1, 0, 2][j], 0)))^n. <<1, 141, 1394, 5910, 17053, 39361, 78602, 141702, 236833, 373309, 561704>>)[1, 1]: seq(a(n), n=0..50);
Formula
G.f.: -(12*x^10 +390*x^9 +1821*x^8 +4057*x^7 +6070*x^6 +6651*x^5 +5374*x^4 +3123*x^3 +1112*x^2 +139*x+1) / ((x^2+x+1)*(x^2+1)*(x+1)^2*(x-1)^5).
Comments