cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204470 Number of 6-element subsets that can be chosen from {1,2,...,6*n} having element sum 18*n+3.

Original entry on oeis.org

0, 1, 58, 676, 3486, 11963, 32134, 73294, 148718, 276373, 479632, 787986, 1237756, 1872809, 2745266, 3916220, 5456444, 7447107, 9980486, 13160678, 17104314, 21941271, 27815384, 34885162, 43324496, 53323377, 65088604, 78844500, 94833624, 113317483, 134577246
Offset: 0

Views

Author

Alois P. Heinz, Jan 16 2012

Keywords

Comments

a(n) is the number of partitions of 18*n+3 into 6 distinct parts <= 6*n.

Examples

			a(2) = 58 because there are 58 6-element subsets that can be chosen from {1,2,...,12} having element sum 39: {1,2,3,10,11,12}, {1,2,4,9,11,12}, ..., {3,5,6,7,8,10}, {4,5,6,7,8,9}.
		

Crossrefs

Column k=6 of A204459.

Programs

  • Maple
    a:= n-> (Matrix(11, (i, j)-> `if`(i=j-1, 1, `if`(i=11, [-1, 4, -5, 0, 5, -3, -3, 5, 0, -5, 4][j], 0)))^n. <<0, 1, 58, 676, 3486, 11963, 32134, 73294, 148718, 276373, 479632>>)[1, 1]: seq(a(n), n=0..50);

Formula

G.f.: x*(32*x^9 +352*x^8 +979*x^7 +1370*x^6 +1425*x^5 +1394*x^4 +1072*x^3 +449*x^2 +54*x+1) / ((x+1)*(x^4+x^3+x^2+x+1)*(x-1)^6).